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BACKGROUND: Most chemicals in commerce have not been evaluated for their carcinogenic potential. The de facto gold-standard approach to carcino-
gen testing adopts the 2-y rodent bioassay, a time-consuming and costly procedure. High-throughput in vitro assays are a promising alternative for
addressing the limitations in carcinogen screening.

OBJECTIVES: We developed a screening process for predicting chemical carcinogenicity and genotoxicity and characterizing modes of actions
(MoAs) using in vitro gene expression assays.

METHODS: We generated a large toxicogenomics resource comprising ~ 6,000 expression profiles corresponding to 330 chemicals profiled in HepG2
(human hepatocellular carcinoma cell line) at multiple doses and replicates. Predictive models of carcinogenicity and genotoxicity were built using a
random forest classifier. Differential pathway enrichment analysis was performed to identify pathways associated with carcinogen exposure.
Signatures of carcinogenicity and genotoxicity were compared with external sources, including Drugmatrix and the Connectivity Map.

RESULTS: Among profiles with sufficient bioactivity, our classifiers achieved 72.2% Area Under the ROC Curve (AUC) for predicting carcinogenicity
and 82.3% AUC for predicting genotoxicity. Chemical bioactivity, as measured by the strength and reproducibility of the transcriptional response,
was not significantly associated with long-term carcinogenicity in doses up to 40 pM. However, sufficient bioactivity was necessary for a chemical to
be used for prediction of carcinogenicity. Pathway enrichment analysis revealed pathways consistent with known pathways that drive cancer, includ-
ing DNA damage and repair. The data is available at https://clue.io/CRCGN_ABC, and a portal for query and visualization of the results is accessible
at https://carcinogenome.org.

DiscussionN: We demonstrated an in vitro screening approach using gene expression profiling to predict carcinogenicity and infer MoAs of chemical

perturbations. https://doi.org/10.1289/EHP3986

Introduction

Despite significant investments into cancer research over the last
decades, ~ 1.7 million new cancer cases and 600,000 cancers
deaths were estimated in the United States in 2017 alone
(American Cancer Society 2017). Of these, 90-95% are not at-
tributable to known heritable genetic factors, thus making envi-
ronmental exposures a major suspect in driving cancer (Anand
et al. 2008), notwithstanding recent studies pointing to the rate of
cell replications as an important determinant of cancer develop-
ment among different tissue types (Tomasetti and Vogelstein
2015; Tomasetti et al. 2017). Most research aimed at assessing
cancer hazard from chemical exposure has primarily relied on ep-
idemiological studies of past human exposures to suspected carci-
nogens in cancer clusters and on carcinogen screening based on
the 2-y rodent-based bioassay. Epidemiological studies rely on
observational data, and as such, it is often difficult to rule out the
possibility of spurious associations due to confounding effects.
They also require that exposure to a suspected carcinogen is doc-
umentable. Even when the nature of the chemical exposure and
the exposure dose is known, epidemiological studies require long
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follow-up periods; hence, they are not appropriate for the evalua-
tion of new chemicals on the market. Similarly, the 2-y rodent
bioassay, the gold standard for carcinogen testing, is time-
consuming and requires up to $4 million and >800 animals per
compound (Hodgson 2004; Meister 2005; Waters et al. 2010). As
a result, <2% of the ~ 85,000 chemicals registered in the Toxic
Substances Control Act Chemical Substance Inventory have been
tested by this approach (Bucher and Portier 2004; Gold et al.
2005; Huff et al. 2008).

High-throughput transcriptional profiles from short-term chem-
ical exposures have proven useful for predicting long-term carci-
nogenicity and for capturing multiple biological modes of actions
(MoAs) of long-term carcinogenicity. Many studies have explored
the use of high-throughput transcriptional profiling in rodent
models (Eichner et al. 2013; Ellinger-Ziegelbauer et al. 2008;
Fielden et al. 2007; Gusenleitner et al. 2014; Kossler et al.
2015; Nie et al. 2006; Uehara et al. 2011). However, questions
remain about the relevance of rodent models for characterizing
human carcinogenicity, and most importantly, they are still
excessively time-consuming and expensive for large-scale test-
ing. In vitro-based screens would help address the time and
cost constraints of carcinogen testing through automated high-
throughput plating, exposure treatment, and assaying. The U.S.
Environmental Protection Agency’s Toxcast (https://www.epa.
gov/chemical-research/exploring-toxcast-data-downloadable-data)
(Judson et al. 2010; Richard et al. 2016) and Tox21 (https://tox21.
gov/) initiatives (Schmidt 2009; Tice et al. 2013) have used vari-
ous reporter assays to characterize adverse effects across thousands
of in vitro chemical exposures. However, while these efforts use
high-throughput techniques with carefully selected gene, pathway,
and adverse response—centric end points, the number of assays and
the diversity of end points are limited. For instance, ToxCast used
624 in vitro end points mapped to 315 genes in Phase I (Judson
et al. 2010) and an additional ~ 200 new end points in Phase II
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(Richard et al. 2016). Studies utilizing this data for the assessment
of chemical carcinogenicity have emphasized the need to expand
the assay set to better characterize diverse MoAs of certain car-
cinogens (Kleinstreuer et al. 2013). mRNA profiling, by assay-
ing the entire transcriptome, or a large portion of it, represents
a promising solution to this need by providing an agnostic view
of which genes and pathways are relevant to chemical-induced
carcinogenesis.

Given the technological advances in gene expression profiling
and the development of cost-effective sequencing platforms, oppor-
tunities arise for their use in large-scale toxicological screenings
(Reed et al. 2019; Zhang et al. 2017). One such solution is the
Luminex 1,000 (L1000) platform (https://www.luminexcorp.com/)
(Peck et al. 2006), a low-cost, high-throughput bead-based plat-
form that measures the expression of ~ 1,000 landmark genes and
infers the remaining genes in the transcriptome by imputation. This
platform was used in the creation of the Connectivity Map (CMap)
(Subramanian et al. 2017), which now includes 1.3 million pertur-
bation profiles of drugs and small molecules and has been instru-
mental in the discovery of small-molecule MoAs. Due to its cost-
effectiveness and appropriateness for large-scale perturbation
screening, we adopted it for the profiling of chemical carcinogens.

We applied the L1000 platform to study the effects of chemi-
cal perturbations of previously validated rat liver carcinogens and
noncarcinogens in HepG2 (human hepatocellular carcinoma) cell
lines. The central hypothesis underlying our study design was
that the long-term carcinogenicity of chemicals can be accurately
predicted from gene expression profiles of short-term in vitro
models. Our approach used machine-learning techniques to build
predictive models of the long-term carcinogenicity of chemicals
based on L1000-derived gene expression profiles of human cell
lines exposed to the studied chemicals. Furthermore, we anno-
tated the in vitro—derived gene signatures by performing pathway
enrichment of carcinogens vs. noncarcinogens to identify MoAs
associated with chemical-induced carcinogenesis. Signatures
derived from this study were also compared to external gene sig-
natures and chemical annotations from knowledge bases such as
Drugmatrix (Ganter et al. 2006, 2005), CMap, and Tox21, to ver-
ify the consistency of results and expand the interpretation of
findings. An overview of our experimental design and analysis
aims is presented in Figure S1.

Methods

Chemical Selection and Annotation

In the chemical selection process, we prioritized chemicals with
long-term rodent liver carcinogenicity annotation for inclusion
in this experiment. Long-term carcinogenicity annotations were
derived from the Carcinogenic Potency Database (CPDB)
(Fitzpatrick 2008). Additional chemicals without carcinogenic-
ity annotation were included on the basis of interest to the
Superfund Research Program (environmental toxicants), pres-
ence in controversial commercial products (included for predic-
tive purposes), and evidence of binding to the aryl hydrocarbon
receptor (AhR), as the AhR is an important mediator of xenobi-
otics, including carcinogens. A complete list of chemicals and
their annotations is provided in Excel Table S1. For CPDB
annotations, the final carcinogenicity labels denote “+ " if car-
cinogenic in rat liver (female or male) or “~" if noncarcinogenic
in both rat and mouse (in female and male) across all tested
organs in the CPDB. Genotoxicity labels denote “+” if muta-
genic or weakly mutagenic in the Salmonella assay, and “-”
otherwise. In total, 330 unique chemicals were used in the anal-
ysis, including 128 carcinogens, 168 noncarcinogens, 100 gen-
otoxicants, and 161 nongenotoxicants.
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Chemical Procurement and Data Generation

Chemicals were procured from the Tox21 library of the National
Toxicology Program (NTP) when available, or from Sigma-
Aldrich otherwise. Compound purity and identity were confirmed
by UPLC-MS, an Acquity Classic UPLC coupled with an SQ
mass spectrometer (Waters). Purity was measured by UV absorb-
ance at 210nm or by evaporative light scattering. Identity was
determined on a single quadrupole mass spectrometer by positive
and/or negative electrospray ionization. Mobile phase A con-
sisted of either 0.1% ammonium hydroxide or 0.05% trifluoroace-
tic acid in water, while mobile phase B consisted of either 0.1%
ammonium hydroxide or 0.06% trifluoroacetic acid in acetoni-
trile. The gradient ran from 5% to 95% mobile phase B over 2.65
min at 0.9 mL/min. An Acquity BEH C18 (Waters), 1.7 um,
2.1x 50 mm column was used with column temperature main-
tained at 65°C. Compounds were dissolved in dimethylsulfoxide
(DMSO) at a nominal concentration of 1 mM, and 1.0 pL of this
solution was injected.

Detailed cell culture, plating, treatment and lysis protocols are
described in https://assets.clue.io/resources/sop-cell.pdf (Subramanian
et al. 2017). Briefly, HepG2 (ATCC® HB-8,065™) was used with
medium RPMI1640 (10040CV; Mediatech) supplemented with
10% v/v fetal bovine serum (F4135; Sigma-Aldrich), 1 X penicillin-
streptomycin-glutamine (Invitrogen 10378016), and incubated at
humidified 5% CO, atmosphere at 37°C. Cell cultures were plated
with 4,000 cells (45 pL of growth medium) per well on 384-well
plates (3707; Corning) and incubated for 24 h before treatment.
Cells were treated with 5 pLL of 1:100 diluted 1,000 X stock com-
pound plates to final volume of 50 pL and incubated for 24 h before
lysis.

Each chemical perturbation was administered at six doses in
triplicate wells per dose and chemical combination, starting from
40 pM maximum dose (40 mM stock diluted 1:1,000) for NTP
chemicals and 20 pM for chemicals procured from Sigma-Aldrich,
in series of twofold dilutions. The sole exception to the standard
dosage was 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which
had a starting dose of 50 nM due to its extreme potency. The vehi-
cle control used was DMSO with final dose of 14.1 mM. Four pos-
itive controls were used (vorinostat, geldanamycin, mitoxantrone,
withaferin-a) each in final doses of 10, 3.33, and 1.00 uM, respec-
tively. Four wells on each plate were reserved for L1000 pipeline
assay controls. These include AO1: bead-only control (negative
control), BO1: POSAMP control (hybridization/staining positive
control), A02, and BO2 (reference RNA control).

For cell lysis, 30 pL. of medium was aspirated, and 25 pL
TCL Lysis Buffer (1031576; Qiagen) was added. Plates were
sealed and maintained at room temperature for 30 min and frozen
in a —80°C freezer. Following treatment and lysis, the gene
expression of the HepG2 cells was profiled using the L.1000 plat-
form, a high-throughput assay that measures the expression of
~ 1,000 landmark genes and computationally infers the expres-
sion of nonmeasured transcripts.

Following cell lysis, the exact L1000 protocol was followed as
described in Subramanian et al. 2017. Briefly, each transcript of in-
terest was targeted with upstream and downstream probe pairs with
a 20-nucleotide gene-specific region, a unique identifying barcode,
and a universal primer site. Gene-specific sequences were detected
by coupling barcodes to Luminex (https://www.luminexcorp.com/)
beads followed by ligation-mediated amplification and hybridization
of amplicon to bead. The L1000 assay measured ~ 1,000 transcripts
using 500 unique bead colors in a process called tag duo detection
and peak deconvolution. Invariant genes were used as controls for
data quality control and normalization.

For each perturbation and landmark gene, we computed the
change in gene expression following the perturbation using a
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moderated z-score procedure as described in the CMap-L1000
workflow. Differential expression values were calculated as mod-
erated z-scores for each landmark gene and each unique perturba-
tion (chemical and dose combination) perturbation, collapsed to a
single value across replicates (Subramanian et al. 2017).

Assessing the Transcriptional Strength of a Perturbation

We used the transcriptional activity score (TAS) as a summary
measure of the impact of a chemical perturbation on landmark
gene expression. TAS integrates signature strength, defined as
the number of genes up-regulated or down-regulated by a particu-
lar perturbation above a given moderated z-score threshold, and
replicate correlation, a measurement of similarity among tripli-
cate profiles corresponding to the same perturbation (unique com-
bination of chemical, dose, cell line, time). Formally, TAS is
quantified as the geometric mean of the signature strength
(SSygene) and the replicate correlation (CCq75) in Equation 1.
SSygene 1s defined as the number of landmark genes (referred to as
card) with ModZ,;; >2 in Equation 2. ModZ is defined as the
978-element vector of replicate collapsed z-scores of landmark
genes, and nrep is the number of replicates in Equation 3. CCq75
is the 75th percentile of the Spearman’s correlation between rep-
licates in landmark space.

\/SSgene X max(CCys,0)

TAS = 1
V978 M
SSngene = card(|modz,qj| >=2) 2
Modzaq; =modz X \/nrep 3)

TAS was calculated for each aggregated profile (one unique
score per chemical and dose combination). This metric takes
value in the [0,1] range, with higher values of TAS taken to rep-
resent a higher level of chemical bioactivity.

Statistical Tests for Comparison of Transcriptional Activity
Score across Profiles

We tested for the difference in TAS values among adjacent dose
groups using a one-tailed Wilcoxon Signed-rank test (paired dif-
ference test), with the pairing determined by the unique chemical
IDs to determine the statistical significance of strictly increased
TAS levels between adjacent and increasing dose groups.

We next tested for difference in TAS between chemicals. In
particular, for each dose rank, two-group comparisons of TAS
scores between carcinogens and noncarcinogens, and between
genotoxicants and nongenotoxicants, were conducted using one-
tailed unpaired two-sample Wilcoxon test to determine the pres-
ence and significance of increased TAS for the carcinogenic com-
pared to noncarcinogenic group, or for the genotoxic compared
to nongenotoxic group.

Equivalent in Vitro Dose (Cmax) Estimation and
Association with Transcriptional Activity Score

Finding the relationship between in vitro gene expression
responses and adverse phenotypes in vivo is an important goal of
this study. To this end, we assessed the relationship between in
vitro transcriptional bioactivity (TAS) and corresponding in vivo
dose used in the rodent bioassay from which carcinogenicity
labels were derived. Using a toxicokinetic model (Pearce et al.
2017), we estimated the equivalent in vitro dose (Cmax) corre-
sponding to the in vivo dose tested in the rat bioassay. Cmax val-
ues, maximum plasma concentrations, were estimated using a
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three-compartment model in the R package httk (version 1.8; R
Project) (Pearce et al. 2017). For carcinogenic compounds, these
values were derived from the CPDB-reported median toxic dose
(TD50) administered in rats. For noncarcinogenicity compounds,
Cmax values were derived from the CPDB-reported maximum
dose administered in rats. Chemicals with missing TD50 (if carci-
nogenic) or maximum dose (if noncarcinogenic) were omitted
from this analysis. It was assumed that dosing was once per day
for 365 d. While these Cmax values were not used in the in vitro
dosing scheme, they can be used in the interpretation of the aber-
rant behavior of some of our in vitro profiles.

To determine the association between TAS, in vivo carcinoge-
nicity, and Cmax, we used the following linear regression model:

loglo(CmaX) ~ o+ BTAS X TAS+ BCARC x CARC
+ BT:C X TASCARC, (4)

where TAS denotes the mean TAS for each chemical (across six
doses), and CARC denotes the carcinogenicity status of the chem-
ical in the rodent bioassay. We tested for significance of the coef-
ficients Brag, Bearcs and Pr-c under the null hypotheses of zero-
valued coefficients (no effect).

Supervised Learning for Prediction of Carcinogenicity and
Genotoxicity

To build classifiers for the prediction of carcinogenicity and gen-
otoxicity, we used the moderated z-scores of landmark genes as
predictive features. The random forest classifier was used, as
implemented in the R package caret (Kuhn 2008). The perform-
ance of the classifier was evaluated using a resampling scheme
consisting of 25 random repeats of training on 70% of the sam-
ples and testing on the remaining 30%. The training and test set
split was performed at the chemical level, so that all replicates of
each chemical were only included either in the train or the test set,
to avoid information leakage (overfitting). To assess the effect of
chemicals’ bioactivity on the performance of the classifier, the
evaluation was repeated on different subsets of profiles corre-
sponding to different TAS thresholds (all profiles, TAS >0.2,
>0.3, >0.4). Area under the receiver operating characteristic curve
(AUC) was used for the assessment of a classifier performance, as
it is a well-established metric that captures the trade-off between
sensitivity and specificity across multiple thresholds.

We derived the top predictive features of the classifiers in the
space of landmark genes using the variable importance metric.
Variable importance was measured by the mean decrease in Gini
index (“MeanDecreaseGini”) as defined in the function “impor-
tance” in the R package randomForest (Liaw and Wiener 2002).

Final predictions of carcinogenicity and genotoxicity were
made using leave-one-(chemical)-out cross-validation (CV); that
is, at each CV iteration, a single chemical’s profiles across multi-
ple doses are left out, and a classifier is trained based on all
remaining chemicals, then applied to the prediction of the left-out
chemical’s profiles. This procedure was repeated with each of the
TAS subsets.

Deriving Pathway Signatures of Carcinogenicity

We derived pathway activity scores using the R Bioconductor
GSVA (Gene Set Variation Analysis) package (Hdanzelmann et al.
2013). GSVA is a competitive test of gene set enrichment that
takes as input a gene-by-sample expression matrix and generates
a gene set-by-sample enrichment score matrix, with its entries
representing the pathway enrichment of each sample with respect
to each of a user-specified list of gene sets. Pathway enrichment
scores were calculated for pathways in the MsigDB C2 Reactome
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pathway compendium (Croft et al. 2014; Fabregat et al. 2016;
Liberzon et al. 2011). The gene set—projected matrix was then
used as input for differential analysis with respect to sample phe-
notype labels (carcinogenicity or genotoxicity) using the R
Bioconductor package limma (Ritchie et al. 2015; Smyth 2005)
to identify pathways with differences in activity levels between
chemical groups. This differential analysis was repeated from
data inputs with various TAS thresholding (TAS >0, 0.2, 0.3,
0.4). One-sided p-values consistent with the direction of change
in pathway activity scores were estimated. The p-values across
analyses from multiple TAS subsets were combined using the
Fisher's method and adjusted for multiple hypothesis testing
using false discovery rate (FDR) procedure (Benjamini and
Hochberg 1995).

Comparison to Drugmatrix Signatures

Using gene set enrichment analysis (GSEA) (Subramanian et al.
2005), we compared how well our profiles recapitulated external
signatures of carcinogenicity and genotoxicity extracted from the
NTP Drugmatrix database (Ganter et al. 2006). The Drugmatrix
is a compendium of microarray profiles of short-term chemical
exposures in intact rat organs (liver samples used only) and in
cell cultures (primary rat hepatocytes). The Drugmatrix-derived
signatures were defined as the lists of genes in the Drugmatrix
significantly associated with long-term carcinogenicity and geno-
toxicity. Data processing of the Drugmatrix data was consistent
with methods described in Gusenleitner et al. (2014). Gene fea-
tures were mapped from rat Ensembl (Zerbino et al. 2018) gene
identifiers to human gene symbols using Biomart (Durinck et al.
2005). Differential expression analysis was conducted using
limma (Ritchie et al. 2015; Smyth 2005) to identify markers of
carcinogenicity and genotoxicity after correcting for the effect of
dose and duration of exposure. For each comparison, a list of sig-
nificant genes was derived using an FDR cutoff of 0.01 and abso-
lute value of log fold change of 0.2, up to a maximum of 300
genes as ranked by FDR. Signatures of carcinogenicity and geno-
toxicity (direction sensitive: up-regulated/down-regulated) were
derived for three Drugmatrix subsets: liver profiles, cell culture
profiles, and low-dose cell culture profiles (<50 pM), the latter
consistent with the range of doses used in our experiment. The
detailed gene lists included in the Drugmatrix signatures are
documented in Excel Table S2. These gene signatures were tested
for enrichment against our L1000 profiles in various subsets
(TAS >0, 0.2, 0.3, 0.4), using the binary phenotypes of carcino-
genicity and genotoxicity and the GSEA method, with empirical
p-values estimated based on 10,000 gene set permutations.

Comparison with Connectivity Map Signatures

We performed a systematic comparison of our signatures to those
in the CMap database. To this end, we computed the connectivity
score, a measure of similarity, between pairs of signatures, in this
case, between each of our signatures and each of the perturbation
signatures in the CMap, which comprises ~ 1.3 million profiles
corresponding to 19,811 drugs and small molecules, and 5,075
molecular (gene-specific knockdown and overexpression) pertur-
bations across 3 to 77 cell lines (Subramanian et al. 2017). The
connectivity scores were expressed as percentile values in the
[—100, 100] range, wherein a score of 100 represented maximum
signature overlap, —100 represented maximum signature rever-
sal, and O represented lack of concordance between signatures in
either direction. Connectivity scores were computed with respect
to both individual CMap perturbagens, and perturbagen classes
(PCLs), defined as sets of perturbagens with similar MoAs or gene
target annotations. Next, we performed differential connectivity
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analysis with respect to our chemical groups (carcinogens vs. non-
carcinogens, genotoxicants vs. nongenotoxicants) using a one-
tailed Wilcoxon rank-sum test to test for presence of increased
connectivity in the positive class (carcinogenic or genotoxic).
These tests were repeated for each TAS-based subset of our data,
and FDR values were calculated. A minimum mean connectivity
score of 60 for the positive class was used to filter out differential
connectivity hits with low base connectivity scores.

Investigation Of Aryl Hydrocarbon Receptor Activation in
L1000 Profiles

To examine the behavior of AhR-related chemicals included in
the study, we tested whether these chemicals exhibit enriched ac-
tivity of AhR-related gene sets compiled from independent sour-
ces. Lists of chemicals with known AhR activity were identified
using multiple AhR-related Tox 21 reporter assays extracted
from the tool Tox21 Enricher (Hur et al. 2018), or using custom
chemical annotation with expert knowledge (referenced as
“Sherr_AHR_agonist”). Lists of AhR target genes were compiled
from literature, as annotated in Excel Table S3.

A one-directional weighted Kolmogorov-Smirnov (KS) test
was performed to test for the enrichment of “AhR-positive” sam-
ples (profiles corresponding to AhR-related chemicals) among
the top-ranked profiles sorted by descending AhR gene set activ-
ity scores. The activity scores represent the median scores across
four individual AhR gene set scores calculated using GSVA.

Profiles corresponding to AhR-related chemicals in the list
“Sherr_ AHR_agonist” were clustered using the similarity matrix
derived from the connectivity scores of the selected profiles (see
previous section for the calculation of connectivity scores).

Statistical Reporting

All statements indicating significance are based on threshold
of multiple hypothesis corrected o <0.05, unless otherwise
specified.

Results

Transcriptional Activity Score Analysis and
Chemical Bioactivity

We used the TAS as a proxy for chemical bioactivity. Subsequent
analyses were based on subsets of profiles at different TAS thresh-
olds (TAS >0, 0.2, 0.3, 0.4). TAS >0.2 is the standard cutoff for
sufficient bioactivity adopted by the CMap-L1000 workflow
(Subramanian et al. 2017), while TAS >0.3 and TAS >0.4 repre-
sent more stringent thresholds we used to assess the effect of
increasing bioactivity on downstream analysis, such as classifica-
tion and gene set enrichment. While the majority of our profiles
showed low transcriptional bioactivity, a substantial percent of
profiles achieved sufficient TAS. Among 330 chemicals repre-
sented across 1,972 replicated collapsed profiles, 133 chemicals
(40.3%) achieved TAS >0.2 in at least one dose, 89 chemicals
(26.97%) achieved TAS >0.3, and 63 chemicals (19.09%) achieved
TAS >0.4.

The Effect of Chemical Dose on Transcriptional Bioactivity

We performed statistical tests to compare TAS of adjacent dose
groups and to evaluate how bioactivity is affected by dose.
Statistically significantly higher TAS were found when compar-
ing dose rank 3 with rank 2 (FDR <0.01), rank 4 with 3, rank 5
with 4, and rank 6 with 5 (FDR <0.001) (Figure 1A). The con-
sistent significance of TAS differences between adjacent dose
groups implies that increasing the dose is effective at increasing
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Figure 1. Box plot of transcriptional activity scores (TAS) by sample subsets. (A) Box plot of TAS distributions for each dose level (rank = 1 lowest dose;
rank 6 = highest dose). Numeric labels indicate the significance of paired one-sided two-group TAS comparison between adjacent dose groups, adjusted for
multiple comparisons across doses using the false discovery rate method (FDR) (* =FDR <0.05; *** =FDR <0.001) (see “Methods” section). (B) Box plot
of TAS distribution for each dose level, binned by TAS subsets. (C) Distribution of TAS grouped by chemical carcinogenicity within each dose level. p-
Values indicate the significance of unpaired one-sided two-group TAS comparison between TAS of carcinogenic chemicals and TAS of noncarcinogenic chem-
icals within each dose group. (D) Scatterplot of mean TAS per chemical and the ratio of equivalent in vitro dose (Cmax) over maximum in vitro dose (40 pM)
(see “Methods” section for Cmax calculation). Box plots in Panels A, B, and C have the following specifications: the lower, middle, upper hinges correspond-
ing to the 25th, 50th (median), and 75th percentiles, respectively; the upper and lower whiskers extend to the smaller and largest value at most 1.5 X IQR
(interquartile range) from the hinge, and data points beyond the whiskers are represented as dots.

the transcriptional bioactivity of profiles, with the maximum dose
used in this experiment yielding the highest range of TAS scores.
When binned by TAS range (Figure 1B), the monotonically
increasing dose response of TAS was apparent across all bins and
stronger for higher TAS ranges.

The Effect of Carcinogenicity and Genotoxicity on
Transcriptional Bioactivity

Next, we evaluated whether the level of a chemical bioactivity as
captured by TAS had any association with that chemical’s long-
term carcinogenicity or genotoxicity. Remarkably, carcinogenic-
ity showed no effect on TAS in all dose groups (Figure 1C). On
the other hand, genotoxicity showed a marginally significant
effect on TAS among profiles with dose rank 1 (lowest dose
group) and dose rank 6 (highest dose group), where genotoxic
chemicals had nominally significantly higher TAS compared to
nongenotoxic chemicals (p-value cutoff >0.05), although follow-
ing multiple hypothesis testing (FDR method), no groups showed
significance at FDR <0.05 (Figure S2). To discern possible mod-
eling bias due to differing maximum dose depending on the
source of chemical procurement, we repeated the test for the
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effect of carcinogenicity and genotoxicity on TAS in all dose
groups in each of the two chemical groups separated by the pro-
curement sources: Group 1: Sigma-Aldrich chemicals with maxi-
mum dose of 20 uM (Figure S3A) and Group 2: NTP chemicals
with maximum dose at 40 uM (Figure S3B). Confirming the
results of the bulk analysis in Figure 1C, carcinogen